데이터 분석을 공부 하려면? 데이터가 있어야 한다!
데이터 분석을 공부하려고 구글링을 해보면 Pandas를 잘 다루어야 한다는 이야기가 많다. Pandas 라이브러리는 데이터를 DataFrame의 형태로 가공하기 쉽게 해주는 라이브러리이다. Pandas를 잘 다루기 위해서는 다양한 데이터를 가공해 보는것이 좋다. pydataset 라이브러리는 다양한 데이터를 제공해 준다. pip를 통해 pydataset 라이브러리를 설치하고 데이터를 불러와 보자.
pydataset 라이브러리 설치하기
- jupyter notebook을 열고 하기 명령어를 통해 pydataset을 설치하자.
Collecting pydataset
Downloading pydataset-0.2.0.tar.gz (15.9 MB)
Preparing metadata (setup.py): started
Preparing metadata (setup.py): finished with status 'done'
Requirement already satisfied: pandas in c:\users\sjhsj\appdata\local\programs\python\python38\lib\site-packages (from pydataset) (1.2.1)
Requirement already satisfied: numpy>=1.16.5 in c:\users\sjhsj\appdata\local\programs\python\python38\lib\site-packages (from pandas->pydataset) (1.19.5)
Requirement already satisfied: pytz>=2017.3 in c:\users\sjhsj\appdata\local\programs\python\python38\lib\site-packages (from pandas->pydataset) (2020.5)
Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\sjhsj\appdata\local\programs\python\python38\lib\site-packages (from pandas->pydataset) (2.8.1)
Requirement already satisfied: six>=1.5 in c:\users\sjhsj\appdata\roaming\python\python38\site-packages (from python-dateutil>=2.7.3->pandas->pydataset) (1.15.0)
Building wheels for collected packages: pydataset
Building wheel for pydataset (setup.py): started
Building wheel for pydataset (setup.py): finished with status 'done'
Created wheel for pydataset: filename=pydataset-0.2.0-py3-none-any.whl size=15939431 sha256=4d0313a83c7772e1ae2e97cbb576bc03e137971b2a78cd873c2464504c2cb668
Stored in directory: c:\users\sjhsj\appdata\local\pip\cache\wheels\d7\e5\36\85d319586b4a405d001029d489102f526ce5546248c295932a
Successfully built pydataset
Installing collected packages: pydataset
Successfully installed pydataset-0.2.0
pydataset 불러오기
- import 명령을 통해 pydataset을 불러오자
initiated datasets repo at: C:\Users\sjhsj\.pydataset/
- pydataset의 data()명령어를 통해 Data의 목록을 살펴보자
|
dataset_id |
title |
0 |
AirPassengers |
Monthly Airline Passenger Numbers 1949-1960 |
1 |
BJsales |
Sales Data with Leading Indicator |
2 |
BOD |
Biochemical Oxygen Demand |
3 |
Formaldehyde |
Determination of Formaldehyde |
4 |
HairEyeColor |
Hair and Eye Color of Statistics Students |
... |
... |
... |
752 |
VerbAgg |
Verbal Aggression item responses |
753 |
cake |
Breakage Angle of Chocolate Cakes |
754 |
cbpp |
Contagious bovine pleuropneumonia |
755 |
grouseticks |
Data on red grouse ticks from Elston et al. 2001 |
756 |
sleepstudy |
Reaction times in a sleep deprivation study |
757 rows × 2 columns
데이터 목록 개수를 확인해 보면 총 757개의 데이터 셋 목록이 있는 것을 확인 할 수 있다
Iris Dataset 불러오기
- data 명령어 괄호 사이에 Dataset 이름을 넣어주면 바로 데이터 셋을 불러 올 수 있다 pydataset.data(‘iris’)
|
Sepal.Length |
Sepal.Width |
Petal.Length |
Petal.Width |
Species |
1 |
5.1 |
3.5 |
1.4 |
0.2 |
setosa |
2 |
4.9 |
3.0 |
1.4 |
0.2 |
setosa |
3 |
4.7 |
3.2 |
1.3 |
0.2 |
setosa |
4 |
4.6 |
3.1 |
1.5 |
0.2 |
setosa |
5 |
5.0 |
3.6 |
1.4 |
0.2 |
setosa |
6 |
5.4 |
3.9 |
1.7 |
0.4 |
setosa |
7 |
4.6 |
3.4 |
1.4 |
0.3 |
setosa |
8 |
5.0 |
3.4 |
1.5 |
0.2 |
setosa |
9 |
4.4 |
2.9 |
1.4 |
0.2 |
setosa |
10 |
4.9 |
3.1 |
1.5 |
0.1 |
setosa |
11 |
5.4 |
3.7 |
1.5 |
0.2 |
setosa |
12 |
4.8 |
3.4 |
1.6 |
0.2 |
setosa |
13 |
4.8 |
3.0 |
1.4 |
0.1 |
setosa |
14 |
4.3 |
3.0 |
1.1 |
0.1 |
setosa |
15 |
5.8 |
4.0 |
1.2 |
0.2 |
setosa |
16 |
5.7 |
4.4 |
1.5 |
0.4 |
setosa |
17 |
5.4 |
3.9 |
1.3 |
0.4 |
setosa |
18 |
5.1 |
3.5 |
1.4 |
0.3 |
setosa |
19 |
5.7 |
3.8 |
1.7 |
0.3 |
setosa |
20 |
5.1 |
3.8 |
1.5 |
0.3 |
setosa |
21 |
5.4 |
3.4 |
1.7 |
0.2 |
setosa |
22 |
5.1 |
3.7 |
1.5 |
0.4 |
setosa |
23 |
4.6 |
3.6 |
1.0 |
0.2 |
setosa |
24 |
5.1 |
3.3 |
1.7 |
0.5 |
setosa |
25 |
4.8 |
3.4 |
1.9 |
0.2 |
setosa |
26 |
5.0 |
3.0 |
1.6 |
0.2 |
setosa |
27 |
5.0 |
3.4 |
1.6 |
0.4 |
setosa |
28 |
5.2 |
3.5 |
1.5 |
0.2 |
setosa |
29 |
5.2 |
3.4 |
1.4 |
0.2 |
setosa |
30 |
4.7 |
3.2 |
1.6 |
0.2 |
setosa |
31 |
4.8 |
3.1 |
1.6 |
0.2 |
setosa |
32 |
5.4 |
3.4 |
1.5 |
0.4 |
setosa |
33 |
5.2 |
4.1 |
1.5 |
0.1 |
setosa |
34 |
5.5 |
4.2 |
1.4 |
0.2 |
setosa |
35 |
4.9 |
3.1 |
1.5 |
0.2 |
setosa |
36 |
5.0 |
3.2 |
1.2 |
0.2 |
setosa |
37 |
5.5 |
3.5 |
1.3 |
0.2 |
setosa |
38 |
4.9 |
3.6 |
1.4 |
0.1 |
setosa |
39 |
4.4 |
3.0 |
1.3 |
0.2 |
setosa |
40 |
5.1 |
3.4 |
1.5 |
0.2 |
setosa |
41 |
5.0 |
3.5 |
1.3 |
0.3 |
setosa |
42 |
4.5 |
2.3 |
1.3 |
0.3 |
setosa |
43 |
4.4 |
3.2 |
1.3 |
0.2 |
setosa |
44 |
5.0 |
3.5 |
1.6 |
0.6 |
setosa |
45 |
5.1 |
3.8 |
1.9 |
0.4 |
setosa |
46 |
4.8 |
3.0 |
1.4 |
0.3 |
setosa |
47 |
5.1 |
3.8 |
1.6 |
0.2 |
setosa |
48 |
4.6 |
3.2 |
1.4 |
0.2 |
setosa |
49 |
5.3 |
3.7 |
1.5 |
0.2 |
setosa |
50 |
5.0 |
3.3 |
1.4 |
0.2 |
setosa |
51 |
7.0 |
3.2 |
4.7 |
1.4 |
versicolor |
52 |
6.4 |
3.2 |
4.5 |
1.5 |
versicolor |
53 |
6.9 |
3.1 |
4.9 |
1.5 |
versicolor |
54 |
5.5 |
2.3 |
4.0 |
1.3 |
versicolor |
55 |
6.5 |
2.8 |
4.6 |
1.5 |
versicolor |
56 |
5.7 |
2.8 |
4.5 |
1.3 |
versicolor |
57 |
6.3 |
3.3 |
4.7 |
1.6 |
versicolor |
58 |
4.9 |
2.4 |
3.3 |
1.0 |
versicolor |
59 |
6.6 |
2.9 |
4.6 |
1.3 |
versicolor |
60 |
5.2 |
2.7 |
3.9 |
1.4 |
versicolor |
61 |
5.0 |
2.0 |
3.5 |
1.0 |
versicolor |
62 |
5.9 |
3.0 |
4.2 |
1.5 |
versicolor |
63 |
6.0 |
2.2 |
4.0 |
1.0 |
versicolor |
64 |
6.1 |
2.9 |
4.7 |
1.4 |
versicolor |
65 |
5.6 |
2.9 |
3.6 |
1.3 |
versicolor |
66 |
6.7 |
3.1 |
4.4 |
1.4 |
versicolor |
67 |
5.6 |
3.0 |
4.5 |
1.5 |
versicolor |
68 |
5.8 |
2.7 |
4.1 |
1.0 |
versicolor |
69 |
6.2 |
2.2 |
4.5 |
1.5 |
versicolor |
70 |
5.6 |
2.5 |
3.9 |
1.1 |
versicolor |
71 |
5.9 |
3.2 |
4.8 |
1.8 |
versicolor |
72 |
6.1 |
2.8 |
4.0 |
1.3 |
versicolor |
73 |
6.3 |
2.5 |
4.9 |
1.5 |
versicolor |
74 |
6.1 |
2.8 |
4.7 |
1.2 |
versicolor |
75 |
6.4 |
2.9 |
4.3 |
1.3 |
versicolor |
76 |
6.6 |
3.0 |
4.4 |
1.4 |
versicolor |
77 |
6.8 |
2.8 |
4.8 |
1.4 |
versicolor |
78 |
6.7 |
3.0 |
5.0 |
1.7 |
versicolor |
79 |
6.0 |
2.9 |
4.5 |
1.5 |
versicolor |
80 |
5.7 |
2.6 |
3.5 |
1.0 |
versicolor |
81 |
5.5 |
2.4 |
3.8 |
1.1 |
versicolor |
82 |
5.5 |
2.4 |
3.7 |
1.0 |
versicolor |
83 |
5.8 |
2.7 |
3.9 |
1.2 |
versicolor |
84 |
6.0 |
2.7 |
5.1 |
1.6 |
versicolor |
85 |
5.4 |
3.0 |
4.5 |
1.5 |
versicolor |
86 |
6.0 |
3.4 |
4.5 |
1.6 |
versicolor |
87 |
6.7 |
3.1 |
4.7 |
1.5 |
versicolor |
88 |
6.3 |
2.3 |
4.4 |
1.3 |
versicolor |
89 |
5.6 |
3.0 |
4.1 |
1.3 |
versicolor |
90 |
5.5 |
2.5 |
4.0 |
1.3 |
versicolor |
91 |
5.5 |
2.6 |
4.4 |
1.2 |
versicolor |
92 |
6.1 |
3.0 |
4.6 |
1.4 |
versicolor |
93 |
5.8 |
2.6 |
4.0 |
1.2 |
versicolor |
94 |
5.0 |
2.3 |
3.3 |
1.0 |
versicolor |
95 |
5.6 |
2.7 |
4.2 |
1.3 |
versicolor |
96 |
5.7 |
3.0 |
4.2 |
1.2 |
versicolor |
97 |
5.7 |
2.9 |
4.2 |
1.3 |
versicolor |
98 |
6.2 |
2.9 |
4.3 |
1.3 |
versicolor |
99 |
5.1 |
2.5 |
3.0 |
1.1 |
versicolor |
100 |
5.7 |
2.8 |
4.1 |
1.3 |
versicolor |
101 |
6.3 |
3.3 |
6.0 |
2.5 |
virginica |
102 |
5.8 |
2.7 |
5.1 |
1.9 |
virginica |
103 |
7.1 |
3.0 |
5.9 |
2.1 |
virginica |
104 |
6.3 |
2.9 |
5.6 |
1.8 |
virginica |
105 |
6.5 |
3.0 |
5.8 |
2.2 |
virginica |
106 |
7.6 |
3.0 |
6.6 |
2.1 |
virginica |
107 |
4.9 |
2.5 |
4.5 |
1.7 |
virginica |
108 |
7.3 |
2.9 |
6.3 |
1.8 |
virginica |
109 |
6.7 |
2.5 |
5.8 |
1.8 |
virginica |
110 |
7.2 |
3.6 |
6.1 |
2.5 |
virginica |
111 |
6.5 |
3.2 |
5.1 |
2.0 |
virginica |
112 |
6.4 |
2.7 |
5.3 |
1.9 |
virginica |
113 |
6.8 |
3.0 |
5.5 |
2.1 |
virginica |
114 |
5.7 |
2.5 |
5.0 |
2.0 |
virginica |
115 |
5.8 |
2.8 |
5.1 |
2.4 |
virginica |
116 |
6.4 |
3.2 |
5.3 |
2.3 |
virginica |
117 |
6.5 |
3.0 |
5.5 |
1.8 |
virginica |
118 |
7.7 |
3.8 |
6.7 |
2.2 |
virginica |
119 |
7.7 |
2.6 |
6.9 |
2.3 |
virginica |
120 |
6.0 |
2.2 |
5.0 |
1.5 |
virginica |
121 |
6.9 |
3.2 |
5.7 |
2.3 |
virginica |
122 |
5.6 |
2.8 |
4.9 |
2.0 |
virginica |
123 |
7.7 |
2.8 |
6.7 |
2.0 |
virginica |
124 |
6.3 |
2.7 |
4.9 |
1.8 |
virginica |
125 |
6.7 |
3.3 |
5.7 |
2.1 |
virginica |
126 |
7.2 |
3.2 |
6.0 |
1.8 |
virginica |
127 |
6.2 |
2.8 |
4.8 |
1.8 |
virginica |
128 |
6.1 |
3.0 |
4.9 |
1.8 |
virginica |
129 |
6.4 |
2.8 |
5.6 |
2.1 |
virginica |
130 |
7.2 |
3.0 |
5.8 |
1.6 |
virginica |
131 |
7.4 |
2.8 |
6.1 |
1.9 |
virginica |
132 |
7.9 |
3.8 |
6.4 |
2.0 |
virginica |
133 |
6.4 |
2.8 |
5.6 |
2.2 |
virginica |
134 |
6.3 |
2.8 |
5.1 |
1.5 |
virginica |
135 |
6.1 |
2.6 |
5.6 |
1.4 |
virginica |
136 |
7.7 |
3.0 |
6.1 |
2.3 |
virginica |
137 |
6.3 |
3.4 |
5.6 |
2.4 |
virginica |
138 |
6.4 |
3.1 |
5.5 |
1.8 |
virginica |
139 |
6.0 |
3.0 |
4.8 |
1.8 |
virginica |
140 |
6.9 |
3.1 |
5.4 |
2.1 |
virginica |
141 |
6.7 |
3.1 |
5.6 |
2.4 |
virginica |
142 |
6.9 |
3.1 |
5.1 |
2.3 |
virginica |
143 |
5.8 |
2.7 |
5.1 |
1.9 |
virginica |
144 |
6.8 |
3.2 |
5.9 |
2.3 |
virginica |
145 |
6.7 |
3.3 |
5.7 |
2.5 |
virginica |
146 |
6.7 |
3.0 |
5.2 |
2.3 |
virginica |
147 |
6.3 |
2.5 |
5.0 |
1.9 |
virginica |
148 |
6.5 |
3.0 |
5.2 |
2.0 |
virginica |
149 |
6.2 |
3.4 |
5.4 |
2.3 |
virginica |
150 |
5.9 |
3.0 |
5.1 |
1.8 |
virginica |
- show_doc option을 통해 Iris Dataset을 정보를 확인해 보자
pydataset.data('iris', show_doc=True)
iris
PyDataset Documentation (adopted from R Documentation. The displayed examples are in R)
## Edgar Anderson's Iris Data
### Description
This famous (Fisher's or Anderson's) iris data set gives the measurements in
centimeters of the variables sepal length and width and petal length and
width, respectively, for 50 flowers from each of 3 species of iris. The
species are _Iris setosa_, _versicolor_, and _virginica_.
### Usage
iris
iris3
### Format
`iris` is a data frame with 150 cases (rows) and 5 variables (columns) named
`Sepal.Length`, `Sepal.Width`, `Petal.Length`, `Petal.Width`, and `Species`.
`iris3` gives the same data arranged as a 3-dimensional array of size 50 by 4
by 3, as represented by S-PLUS. The first dimension gives the case number
within the species subsample, the second the measurements with names `Sepal
L.`, `Sepal W.`, `Petal L.`, and `Petal W.`, and the third the species.
### Source
Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems.
_Annals of Eugenics_, **7**, Part II, 179–188.
The data were collected by Anderson, Edgar (1935). The irises of the Gaspe
Peninsula, _Bulletin of the American Iris Society_, **59**, 2–5.
### References
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) _The New S Language_.
Wadsworth & Brooks/Cole. (has `iris3` as `iris`.)
### See Also
`matplot` some examples of which use `iris`.
### Examples
dni3 <- dimnames(iris3)
ii <- data.frame(matrix(aperm(iris3, c(1,3,2)), ncol = 4,
dimnames = list(NULL, sub(" L.",".Length",
sub(" W.",".Width", dni3[[2]])))),
Species = gl(3, 50, labels = sub("S", "s", sub("V", "v", dni3[[3]]))))
all.equal(ii, iris) # TRUE
iris = pydataset.data('iris')
|
Sepal.Length |
Sepal.Width |
Petal.Length |
Petal.Width |
Species |
1 |
5.1 |
3.5 |
1.4 |
0.2 |
setosa |
2 |
4.9 |
3.0 |
1.4 |
0.2 |
setosa |
3 |
4.7 |
3.2 |
1.3 |
0.2 |
setosa |
4 |
4.6 |
3.1 |
1.5 |
0.2 |
setosa |
5 |
5.0 |
3.6 |
1.4 |
0.2 |
setosa |
6 |
5.4 |
3.9 |
1.7 |
0.4 |
setosa |
7 |
4.6 |
3.4 |
1.4 |
0.3 |
setosa |
8 |
5.0 |
3.4 |
1.5 |
0.2 |
setosa |
9 |
4.4 |
2.9 |
1.4 |
0.2 |
setosa |
10 |
4.9 |
3.1 |
1.5 |
0.1 |
setosa |
11 |
5.4 |
3.7 |
1.5 |
0.2 |
setosa |
12 |
4.8 |
3.4 |
1.6 |
0.2 |
setosa |
13 |
4.8 |
3.0 |
1.4 |
0.1 |
setosa |
14 |
4.3 |
3.0 |
1.1 |
0.1 |
setosa |
15 |
5.8 |
4.0 |
1.2 |
0.2 |
setosa |
16 |
5.7 |
4.4 |
1.5 |
0.4 |
setosa |
17 |
5.4 |
3.9 |
1.3 |
0.4 |
setosa |
18 |
5.1 |
3.5 |
1.4 |
0.3 |
setosa |
19 |
5.7 |
3.8 |
1.7 |
0.3 |
setosa |
20 |
5.1 |
3.8 |
1.5 |
0.3 |
setosa |
21 |
5.4 |
3.4 |
1.7 |
0.2 |
setosa |
22 |
5.1 |
3.7 |
1.5 |
0.4 |
setosa |
23 |
4.6 |
3.6 |
1.0 |
0.2 |
setosa |
24 |
5.1 |
3.3 |
1.7 |
0.5 |
setosa |
25 |
4.8 |
3.4 |
1.9 |
0.2 |
setosa |
26 |
5.0 |
3.0 |
1.6 |
0.2 |
setosa |
27 |
5.0 |
3.4 |
1.6 |
0.4 |
setosa |
28 |
5.2 |
3.5 |
1.5 |
0.2 |
setosa |
29 |
5.2 |
3.4 |
1.4 |
0.2 |
setosa |
30 |
4.7 |
3.2 |
1.6 |
0.2 |
setosa |
31 |
4.8 |
3.1 |
1.6 |
0.2 |
setosa |
32 |
5.4 |
3.4 |
1.5 |
0.4 |
setosa |
33 |
5.2 |
4.1 |
1.5 |
0.1 |
setosa |
34 |
5.5 |
4.2 |
1.4 |
0.2 |
setosa |
35 |
4.9 |
3.1 |
1.5 |
0.2 |
setosa |
36 |
5.0 |
3.2 |
1.2 |
0.2 |
setosa |
37 |
5.5 |
3.5 |
1.3 |
0.2 |
setosa |
38 |
4.9 |
3.6 |
1.4 |
0.1 |
setosa |
39 |
4.4 |
3.0 |
1.3 |
0.2 |
setosa |
40 |
5.1 |
3.4 |
1.5 |
0.2 |
setosa |
41 |
5.0 |
3.5 |
1.3 |
0.3 |
setosa |
42 |
4.5 |
2.3 |
1.3 |
0.3 |
setosa |
43 |
4.4 |
3.2 |
1.3 |
0.2 |
setosa |
44 |
5.0 |
3.5 |
1.6 |
0.6 |
setosa |
45 |
5.1 |
3.8 |
1.9 |
0.4 |
setosa |
46 |
4.8 |
3.0 |
1.4 |
0.3 |
setosa |
47 |
5.1 |
3.8 |
1.6 |
0.2 |
setosa |
48 |
4.6 |
3.2 |
1.4 |
0.2 |
setosa |
49 |
5.3 |
3.7 |
1.5 |
0.2 |
setosa |
50 |
5.0 |
3.3 |
1.4 |
0.2 |
setosa |
51 |
7.0 |
3.2 |
4.7 |
1.4 |
versicolor |
52 |
6.4 |
3.2 |
4.5 |
1.5 |
versicolor |
53 |
6.9 |
3.1 |
4.9 |
1.5 |
versicolor |
54 |
5.5 |
2.3 |
4.0 |
1.3 |
versicolor |
55 |
6.5 |
2.8 |
4.6 |
1.5 |
versicolor |
56 |
5.7 |
2.8 |
4.5 |
1.3 |
versicolor |
57 |
6.3 |
3.3 |
4.7 |
1.6 |
versicolor |
58 |
4.9 |
2.4 |
3.3 |
1.0 |
versicolor |
59 |
6.6 |
2.9 |
4.6 |
1.3 |
versicolor |
60 |
5.2 |
2.7 |
3.9 |
1.4 |
versicolor |
61 |
5.0 |
2.0 |
3.5 |
1.0 |
versicolor |
62 |
5.9 |
3.0 |
4.2 |
1.5 |
versicolor |
63 |
6.0 |
2.2 |
4.0 |
1.0 |
versicolor |
64 |
6.1 |
2.9 |
4.7 |
1.4 |
versicolor |
65 |
5.6 |
2.9 |
3.6 |
1.3 |
versicolor |
66 |
6.7 |
3.1 |
4.4 |
1.4 |
versicolor |
67 |
5.6 |
3.0 |
4.5 |
1.5 |
versicolor |
68 |
5.8 |
2.7 |
4.1 |
1.0 |
versicolor |
69 |
6.2 |
2.2 |
4.5 |
1.5 |
versicolor |
70 |
5.6 |
2.5 |
3.9 |
1.1 |
versicolor |
71 |
5.9 |
3.2 |
4.8 |
1.8 |
versicolor |
72 |
6.1 |
2.8 |
4.0 |
1.3 |
versicolor |
73 |
6.3 |
2.5 |
4.9 |
1.5 |
versicolor |
74 |
6.1 |
2.8 |
4.7 |
1.2 |
versicolor |
75 |
6.4 |
2.9 |
4.3 |
1.3 |
versicolor |
76 |
6.6 |
3.0 |
4.4 |
1.4 |
versicolor |
77 |
6.8 |
2.8 |
4.8 |
1.4 |
versicolor |
78 |
6.7 |
3.0 |
5.0 |
1.7 |
versicolor |
79 |
6.0 |
2.9 |
4.5 |
1.5 |
versicolor |
80 |
5.7 |
2.6 |
3.5 |
1.0 |
versicolor |
81 |
5.5 |
2.4 |
3.8 |
1.1 |
versicolor |
82 |
5.5 |
2.4 |
3.7 |
1.0 |
versicolor |
83 |
5.8 |
2.7 |
3.9 |
1.2 |
versicolor |
84 |
6.0 |
2.7 |
5.1 |
1.6 |
versicolor |
85 |
5.4 |
3.0 |
4.5 |
1.5 |
versicolor |
86 |
6.0 |
3.4 |
4.5 |
1.6 |
versicolor |
87 |
6.7 |
3.1 |
4.7 |
1.5 |
versicolor |
88 |
6.3 |
2.3 |
4.4 |
1.3 |
versicolor |
89 |
5.6 |
3.0 |
4.1 |
1.3 |
versicolor |
90 |
5.5 |
2.5 |
4.0 |
1.3 |
versicolor |
91 |
5.5 |
2.6 |
4.4 |
1.2 |
versicolor |
92 |
6.1 |
3.0 |
4.6 |
1.4 |
versicolor |
93 |
5.8 |
2.6 |
4.0 |
1.2 |
versicolor |
94 |
5.0 |
2.3 |
3.3 |
1.0 |
versicolor |
95 |
5.6 |
2.7 |
4.2 |
1.3 |
versicolor |
96 |
5.7 |
3.0 |
4.2 |
1.2 |
versicolor |
97 |
5.7 |
2.9 |
4.2 |
1.3 |
versicolor |
98 |
6.2 |
2.9 |
4.3 |
1.3 |
versicolor |
99 |
5.1 |
2.5 |
3.0 |
1.1 |
versicolor |
100 |
5.7 |
2.8 |
4.1 |
1.3 |
versicolor |
101 |
6.3 |
3.3 |
6.0 |
2.5 |
virginica |
102 |
5.8 |
2.7 |
5.1 |
1.9 |
virginica |
103 |
7.1 |
3.0 |
5.9 |
2.1 |
virginica |
104 |
6.3 |
2.9 |
5.6 |
1.8 |
virginica |
105 |
6.5 |
3.0 |
5.8 |
2.2 |
virginica |
106 |
7.6 |
3.0 |
6.6 |
2.1 |
virginica |
107 |
4.9 |
2.5 |
4.5 |
1.7 |
virginica |
108 |
7.3 |
2.9 |
6.3 |
1.8 |
virginica |
109 |
6.7 |
2.5 |
5.8 |
1.8 |
virginica |
110 |
7.2 |
3.6 |
6.1 |
2.5 |
virginica |
111 |
6.5 |
3.2 |
5.1 |
2.0 |
virginica |
112 |
6.4 |
2.7 |
5.3 |
1.9 |
virginica |
113 |
6.8 |
3.0 |
5.5 |
2.1 |
virginica |
114 |
5.7 |
2.5 |
5.0 |
2.0 |
virginica |
115 |
5.8 |
2.8 |
5.1 |
2.4 |
virginica |
116 |
6.4 |
3.2 |
5.3 |
2.3 |
virginica |
117 |
6.5 |
3.0 |
5.5 |
1.8 |
virginica |
118 |
7.7 |
3.8 |
6.7 |
2.2 |
virginica |
119 |
7.7 |
2.6 |
6.9 |
2.3 |
virginica |
120 |
6.0 |
2.2 |
5.0 |
1.5 |
virginica |
121 |
6.9 |
3.2 |
5.7 |
2.3 |
virginica |
122 |
5.6 |
2.8 |
4.9 |
2.0 |
virginica |
123 |
7.7 |
2.8 |
6.7 |
2.0 |
virginica |
124 |
6.3 |
2.7 |
4.9 |
1.8 |
virginica |
125 |
6.7 |
3.3 |
5.7 |
2.1 |
virginica |
126 |
7.2 |
3.2 |
6.0 |
1.8 |
virginica |
127 |
6.2 |
2.8 |
4.8 |
1.8 |
virginica |
128 |
6.1 |
3.0 |
4.9 |
1.8 |
virginica |
129 |
6.4 |
2.8 |
5.6 |
2.1 |
virginica |
130 |
7.2 |
3.0 |
5.8 |
1.6 |
virginica |
131 |
7.4 |
2.8 |
6.1 |
1.9 |
virginica |
132 |
7.9 |
3.8 |
6.4 |
2.0 |
virginica |
133 |
6.4 |
2.8 |
5.6 |
2.2 |
virginica |
134 |
6.3 |
2.8 |
5.1 |
1.5 |
virginica |
135 |
6.1 |
2.6 |
5.6 |
1.4 |
virginica |
136 |
7.7 |
3.0 |
6.1 |
2.3 |
virginica |
137 |
6.3 |
3.4 |
5.6 |
2.4 |
virginica |
138 |
6.4 |
3.1 |
5.5 |
1.8 |
virginica |
139 |
6.0 |
3.0 |
4.8 |
1.8 |
virginica |
140 |
6.9 |
3.1 |
5.4 |
2.1 |
virginica |
141 |
6.7 |
3.1 |
5.6 |
2.4 |
virginica |
142 |
6.9 |
3.1 |
5.1 |
2.3 |
virginica |
143 |
5.8 |
2.7 |
5.1 |
1.9 |
virginica |
144 |
6.8 |
3.2 |
5.9 |
2.3 |
virginica |
145 |
6.7 |
3.3 |
5.7 |
2.5 |
virginica |
146 |
6.7 |
3.0 |
5.2 |
2.3 |
virginica |
147 |
6.3 |
2.5 |
5.0 |
1.9 |
virginica |
148 |
6.5 |
3.0 |
5.2 |
2.0 |
virginica |
149 |
6.2 |
3.4 |
5.4 |
2.3 |
virginica |
150 |
5.9 |
3.0 |
5.1 |
1.8 |
virginica |
다른 데이터셋도 불러와 보자
airpassengers = pydataset.data('AirPassengers')
airpassengers
|
time |
AirPassengers |
1 |
1949.000000 |
112 |
2 |
1949.083333 |
118 |
3 |
1949.166667 |
132 |
4 |
1949.250000 |
129 |
5 |
1949.333333 |
121 |
6 |
1949.416667 |
135 |
7 |
1949.500000 |
148 |
8 |
1949.583333 |
148 |
9 |
1949.666667 |
136 |
10 |
1949.750000 |
119 |
11 |
1949.833333 |
104 |
12 |
1949.916667 |
118 |
13 |
1950.000000 |
115 |
14 |
1950.083333 |
126 |
15 |
1950.166667 |
141 |
16 |
1950.250000 |
135 |
17 |
1950.333333 |
125 |
18 |
1950.416667 |
149 |
19 |
1950.500000 |
170 |
20 |
1950.583333 |
170 |
21 |
1950.666667 |
158 |
22 |
1950.750000 |
133 |
23 |
1950.833333 |
114 |
24 |
1950.916667 |
140 |
25 |
1951.000000 |
145 |
26 |
1951.083333 |
150 |
27 |
1951.166667 |
178 |
28 |
1951.250000 |
163 |
29 |
1951.333333 |
172 |
30 |
1951.416667 |
178 |
31 |
1951.500000 |
199 |
32 |
1951.583333 |
199 |
33 |
1951.666667 |
184 |
34 |
1951.750000 |
162 |
35 |
1951.833333 |
146 |
36 |
1951.916667 |
166 |
37 |
1952.000000 |
171 |
38 |
1952.083333 |
180 |
39 |
1952.166667 |
193 |
40 |
1952.250000 |
181 |
41 |
1952.333333 |
183 |
42 |
1952.416667 |
218 |
43 |
1952.500000 |
230 |
44 |
1952.583333 |
242 |
45 |
1952.666667 |
209 |
46 |
1952.750000 |
191 |
47 |
1952.833333 |
172 |
48 |
1952.916667 |
194 |
49 |
1953.000000 |
196 |
50 |
1953.083333 |
196 |
51 |
1953.166667 |
236 |
52 |
1953.250000 |
235 |
53 |
1953.333333 |
229 |
54 |
1953.416667 |
243 |
55 |
1953.500000 |
264 |
56 |
1953.583333 |
272 |
57 |
1953.666667 |
237 |
58 |
1953.750000 |
211 |
59 |
1953.833333 |
180 |
60 |
1953.916667 |
201 |
61 |
1954.000000 |
204 |
62 |
1954.083333 |
188 |
63 |
1954.166667 |
235 |
64 |
1954.250000 |
227 |
65 |
1954.333333 |
234 |
66 |
1954.416667 |
264 |
67 |
1954.500000 |
302 |
68 |
1954.583333 |
293 |
69 |
1954.666667 |
259 |
70 |
1954.750000 |
229 |
71 |
1954.833333 |
203 |
72 |
1954.916667 |
229 |
73 |
1955.000000 |
242 |
74 |
1955.083333 |
233 |
75 |
1955.166667 |
267 |
76 |
1955.250000 |
269 |
77 |
1955.333333 |
270 |
78 |
1955.416667 |
315 |
79 |
1955.500000 |
364 |
80 |
1955.583333 |
347 |
81 |
1955.666667 |
312 |
82 |
1955.750000 |
274 |
83 |
1955.833333 |
237 |
84 |
1955.916667 |
278 |
85 |
1956.000000 |
284 |
86 |
1956.083333 |
277 |
87 |
1956.166667 |
317 |
88 |
1956.250000 |
313 |
89 |
1956.333333 |
318 |
90 |
1956.416667 |
374 |
91 |
1956.500000 |
413 |
92 |
1956.583333 |
405 |
93 |
1956.666667 |
355 |
94 |
1956.750000 |
306 |
95 |
1956.833333 |
271 |
96 |
1956.916667 |
306 |
97 |
1957.000000 |
315 |
98 |
1957.083333 |
301 |
99 |
1957.166667 |
356 |
100 |
1957.250000 |
348 |
101 |
1957.333333 |
355 |
102 |
1957.416667 |
422 |
103 |
1957.500000 |
465 |
104 |
1957.583333 |
467 |
105 |
1957.666667 |
404 |
106 |
1957.750000 |
347 |
107 |
1957.833333 |
305 |
108 |
1957.916667 |
336 |
109 |
1958.000000 |
340 |
110 |
1958.083333 |
318 |
111 |
1958.166667 |
362 |
112 |
1958.250000 |
348 |
113 |
1958.333333 |
363 |
114 |
1958.416667 |
435 |
115 |
1958.500000 |
491 |
116 |
1958.583333 |
505 |
117 |
1958.666667 |
404 |
118 |
1958.750000 |
359 |
119 |
1958.833333 |
310 |
120 |
1958.916667 |
337 |
121 |
1959.000000 |
360 |
122 |
1959.083333 |
342 |
123 |
1959.166667 |
406 |
124 |
1959.250000 |
396 |
125 |
1959.333333 |
420 |
126 |
1959.416667 |
472 |
127 |
1959.500000 |
548 |
128 |
1959.583333 |
559 |
129 |
1959.666667 |
463 |
130 |
1959.750000 |
407 |
131 |
1959.833333 |
362 |
132 |
1959.916667 |
405 |
133 |
1960.000000 |
417 |
134 |
1960.083333 |
391 |
135 |
1960.166667 |
419 |
136 |
1960.250000 |
461 |
137 |
1960.333333 |
472 |
138 |
1960.416667 |
535 |
139 |
1960.500000 |
622 |
140 |
1960.583333 |
606 |
141 |
1960.666667 |
508 |
142 |
1960.750000 |
461 |
143 |
1960.833333 |
390 |
144 |
1960.916667 |
432 |
Titanic = pydataset.data('Titanic')
Titanic
|
Class |
Sex |
Age |
Survived |
Freq |
1 |
1st |
Male |
Child |
No |
0 |
2 |
2nd |
Male |
Child |
No |
0 |
3 |
3rd |
Male |
Child |
No |
35 |
4 |
Crew |
Male |
Child |
No |
0 |
5 |
1st |
Female |
Child |
No |
0 |
6 |
2nd |
Female |
Child |
No |
0 |
7 |
3rd |
Female |
Child |
No |
17 |
8 |
Crew |
Female |
Child |
No |
0 |
9 |
1st |
Male |
Adult |
No |
118 |
10 |
2nd |
Male |
Adult |
No |
154 |
11 |
3rd |
Male |
Adult |
No |
387 |
12 |
Crew |
Male |
Adult |
No |
670 |
13 |
1st |
Female |
Adult |
No |
4 |
14 |
2nd |
Female |
Adult |
No |
13 |
15 |
3rd |
Female |
Adult |
No |
89 |
16 |
Crew |
Female |
Adult |
No |
3 |
17 |
1st |
Male |
Child |
Yes |
5 |
18 |
2nd |
Male |
Child |
Yes |
11 |
19 |
3rd |
Male |
Child |
Yes |
13 |
20 |
Crew |
Male |
Child |
Yes |
0 |
21 |
1st |
Female |
Child |
Yes |
1 |
22 |
2nd |
Female |
Child |
Yes |
13 |
23 |
3rd |
Female |
Child |
Yes |
14 |
24 |
Crew |
Female |
Child |
Yes |
0 |
25 |
1st |
Male |
Adult |
Yes |
57 |
26 |
2nd |
Male |
Adult |
Yes |
14 |
27 |
3rd |
Male |
Adult |
Yes |
75 |
28 |
Crew |
Male |
Adult |
Yes |
192 |
29 |
1st |
Female |
Adult |
Yes |
140 |
30 |
2nd |
Female |
Adult |
Yes |
80 |
31 |
3rd |
Female |
Adult |
Yes |
76 |
32 |
Crew |
Female |
Adult |
Yes |
20 |
pydataset에 등록된 다양한 Dataset을 통해 Pandas를 열심히 공부 하자
댓글남기기